

muscima – tools for the MUSCIMA++ dataset

The muscima package implements tools for easier manipulation of the MUSCIMA++
dataset. Download the dataset here:

https://ufal.mff.cuni.cz/muscima/download

A description of the dataset is on the project’s homepage:

https://ufal.mff.cuni.cz/muscima

And more thoroughly in an arXiv.org publication:

https://arxiv.org/pdf/1703.04824.pdf

This pacakge is licensed under the MIT license (see LICENSE.txt file).
The package author is Jan Hajič jr. You can contact him at:

hajicj@ufal.mff.cuni.cz

Questions and comments are welcome! This package is also hosted on github,
so if you find a bug, submit an issue (or a pull request!) there:

https://github.com/hajicj/muscima

Requirements

Python 3.5, otherwise nothing beyond the requirements.txt file: lxml and numpy.
If you want to apply pitch inference, you should also get music21.

Installation

If you have pip, just run:

pip install muscima

If you don’t have pip, then you should get it [https://pypi.python.org/pypi/pip].
Or use the Anaconda distribution [https://www.continuum.io/].

First steps

Let’s first download the dataset:

curl https://ufal.mff.cuni.cz/~hajicj/2017/docs/MUSCIMA_0.9.zip > MUSCIMA++_0.9.zip
unzip MUSCIMA++_0.9.zip
cd MUSCIMA++_0.9

Take a look at the dataset’s README.md file first. You can also read it online:

https://ufal.mff.cuni.cz/muscima

Please make sure you understand the license requirements – the data is licensed
as CC-BY-NC-SA 4.0, and because it is built over a previous dataset, there are two
attributions required.

Next, we fire up ipython (or just the plain python console, but definitely check out
ipython if you don’t use it!) and parse the data:

ipython
>>> import os
>>> from muscima.io import parse_cropobject_list
>>> cropobject_fnames = [os.path.join('data', 'cropobjects', f) for f in os.listdir('data/cropobjects')]
>>> docs = [parse_cropobject_list(f) for f in cropobject_fnames]
>>> len(docs)
140

In docs, we now have a list of CropObject lists for each of the 140 documents.

Now that the dataset has been parsed, we can try to do some experiments!
We can do for example symbol classification. Go check out the MUSCIMA++ Tutorial!

Contents

Indices and tables

	Index

	Module Index

	Search Page

 Python Module Index

 m |
 s

 		 	

 		
 m	

 	[image: -]
 	
 muscima	

 	
 	
 muscima.cropobject	

 	
 	
 muscima.cropobject_class	

 	
 	
 muscima.dataset	

 	
 	
 muscima.grammar	

 	
 	
 muscima.io	

 		 	

 		
 s	

 	[image: -]
 	
 scripts	

 	
 	
 scripts.add_staff_relationships	

 	
 	
 scripts.add_staffline_symbols	

 	
 	
 scripts.analyze_agreement	

 	
 	
 scripts.analyze_annotations	

 	
 	
 scripts.analyze_tracking_log	

 	
 	
 scripts.classes2mlclasslist	

 	
 	
 scripts.get_images_from_muscima	

 	
 	
 scripts.infer_pitches	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | W

A

 	
 	add_staff_relationships() (in module scripts.add_staff_relationships)

 	
 	align_cropobjects() (in module scripts.analyze_agreement)

 	annotations_from_package() (in module scripts.analyze_tracking_log)

B

 	
 	bbox_dice() (in module muscima.cropobject)

 	bbox_intersection() (in module muscima.cropobject)

 	(in module scripts.analyze_agreement)

 	(muscima.cropobject.CropObject method)

 	bbox_to_integer_bounds() (muscima.cropobject.CropObject static method)

 	bottom (muscima.cropobject.CropObject attribute)

 	bounding_box (muscima.cropobject.CropObject attribute)

 	build_argument_parser() (in module scripts.add_staff_relationships)

 	(in module scripts.add_staffline_symbols)

 	(in module scripts.analyze_agreement)

 	(in module scripts.analyze_annotations)

 	(in module scripts.analyze_tracking_log)

 	(in module scripts.classes2mlclasslist)

 	(in module scripts.get_images_from_muscima)

 	(in module scripts.infer_pitches)

 	
 	build_uid() (muscima.cropobject.CropObject static method)

C

 	
 	compute_cropobject_stats() (in module scripts.analyze_annotations)

 	contains() (muscima.cropobject.CropObject method)

 	count_cropobjects() (in module scripts.analyze_tracking_log)

 	count_cropobjects_and_relationships() (in module scripts.analyze_tracking_log)

 	crop_to_mask() (muscima.cropobject.CropObject method)

 	CropObject (class in muscima.cropobject)

 	cropobject_distance() (in module muscima.cropobject)

 	cropobject_mask_rpf() (in module muscima.cropobject)

 	
 	CropObjectClass (class in muscima.cropobject_class)

 	cropobjects_merge() (in module muscima.cropobject)

 	cropobjects_merge_bbox() (in module muscima.cropobject)

 	cropobjects_merge_links() (in module muscima.cropobject)

 	cropobjects_merge_mask() (in module muscima.cropobject)

 	cropobjects_merge_multiple() (in module muscima.cropobject)

 	cropobjects_on_canvas() (in module muscima.cropobject)

 	cropobjects_rpf() (in module scripts.analyze_agreement)

 	CVC_MUSCIMA (class in muscima.dataset)

D

 	
 	data_display_text() (muscima.cropobject.CropObject method)

 	dataset (muscima.cropobject.CropObject attribute)

 	decode_mask() (muscima.cropobject.CropObject method)

 	decode_mask_bitmap() (muscima.cropobject.CropObject static method)

 	decode_mask_rle() (muscima.cropobject.CropObject static method)

 	
 	default_uid (muscima.cropobject.CropObject attribute)

 	DependencyGrammar (class in muscima.grammar)

 	DependencyGrammarParseError

 	DISTORTIONS (muscima.dataset.CVC_MUSCIMA attribute)

 	doc (muscima.cropobject.CropObject attribute)

E

 	
 	emit_stats_pprint() (in module scripts.analyze_annotations)

 	encode_data() (muscima.cropobject.CropObject method)

 	encode_mask() (muscima.cropobject.CropObject method)

 	encode_mask_bitmap() (muscima.cropobject.CropObject static method)

 	
 	encode_mask_rle() (muscima.cropobject.CropObject static method)

 	events_by_time_units() (in module scripts.analyze_tracking_log)

 	export_cropobject_class_list() (in module muscima.io)

 	export_cropobject_graph() (in module muscima.io)

 	export_cropobject_list() (in module muscima.io)

F

 	
 	find_invalid_in_graph() (muscima.grammar.DependencyGrammar method)

 	
 	format_as_timeflow_csv() (in module scripts.analyze_tracking_log)

 	freqdict() (in module scripts.analyze_tracking_log)

G

 	
 	get_inlink_objects() (muscima.cropobject.CropObject method)

 	
 	get_outlink_objects() (muscima.cropobject.CropObject method)

H

 	
 	hex2rgb() (in module muscima.cropobject_class)

I

 	
 	imfile() (muscima.dataset.CVC_MUSCIMA method)

 	inlink_aggregated_cardinalities (muscima.grammar.DependencyGrammar attribute)

 	inlink_cardinalities (muscima.grammar.DependencyGrammar attribute)

 	
 	inlink_uids (muscima.cropobject.CropObject attribute)

 	is_annotation_package() (in module scripts.analyze_tracking_log)

 	is_empty (muscima.cropobject.CropObject attribute)

 	is_head() (muscima.grammar.DependencyGrammar method)

J

 	
 	join() (muscima.cropobject.CropObject method)

L

 	
 	left (muscima.cropobject.CropObject attribute)

 	
 	link_cropobjects() (in module muscima.cropobject)

 	logs_from_package() (in module scripts.analyze_tracking_log)

M

 	
 	main() (in module scripts.add_staff_relationships)

 	(in module scripts.add_staffline_symbols)

 	(in module scripts.analyze_agreement)

 	(in module scripts.analyze_annotations)

 	(in module scripts.analyze_tracking_log)

 	(in module scripts.classes2mlclasslist)

 	(in module scripts.get_images_from_muscima)

 	(in module scripts.infer_pitches)

 	merge_cropobject_lists() (in module muscima.cropobject)

 	
 	middle (muscima.cropobject.CropObject attribute)

 	MLClassGenerator (class in scripts.classes2mlclasslist)

 	MODES (muscima.dataset.CVC_MUSCIMA attribute)

 	muscima (module)

 	muscima.cropobject (module)

 	muscima.cropobject_class (module)

 	muscima.dataset (module)

 	muscima.grammar (module)

 	muscima.io (module)

N

 	
 	next_color() (scripts.classes2mlclasslist.MLClassGenerator method)

 	
 	next_mlclass() (scripts.classes2mlclasslist.MLClassGenerator method)

O

 	
 	outlink_aggregated_cardinalities (muscima.grammar.DependencyGrammar attribute)

 	outlink_cardinalities (muscima.grammar.DependencyGrammar attribute)

 	
 	outlink_uids (muscima.cropobject.CropObject attribute)

 	overlaps() (muscima.cropobject.CropObject method)

P

 	
 	parse_classnames() (in module scripts.classes2mlclasslist)

 	parse_cropobject_class_list() (in module muscima.io)

 	parse_cropobject_list() (in module muscima.io)

 	parse_dependency_grammar_line() (muscima.grammar.DependencyGrammar method)

 	parse_dependency_grammar_rules() (muscima.grammar.DependencyGrammar method)

 	parse_hex() (in module muscima.cropobject_class)

 	
 	parse_token() (muscima.grammar.DependencyGrammar method)

 	parse_uid() (muscima.cropobject.CropObject method)

 	pixel_metrics() (in module scripts.analyze_agreement)

 	plot_events_by_time() (in module scripts.analyze_tracking_log)

 	project_on() (muscima.cropobject.CropObject method)

 	project_to() (muscima.cropobject.CropObject method)

R

 	
 	render() (muscima.cropobject.CropObject method)

 	rgb2hex() (in module muscima.cropobject_class)

 	(in module scripts.classes2mlclasslist)

 	
 	right (muscima.cropobject.CropObject attribute)

 	rpf_given_alignment() (in module scripts.analyze_agreement)

S

 	
 	scale() (muscima.cropobject.CropObject method)

 	scripts (module)

 	scripts.add_staff_relationships (module)

 	scripts.add_staffline_symbols (module)

 	scripts.analyze_agreement (module)

 	scripts.analyze_annotations (module)

 	scripts.analyze_tracking_log (module)

 	scripts.classes2mlclasslist (module)

 	scripts.get_images_from_muscima (module)

 	
 	scripts.infer_pitches (module)

 	set_dataset() (muscima.cropobject.CropObject method)

 	set_doc() (muscima.cropobject.CropObject method)

 	set_mask() (muscima.cropobject.CropObject method)

 	set_objid() (muscima.cropobject.CropObject method)

 	set_uid() (muscima.cropobject.CropObject method)

 	split_cropobject_on_connected_components() (in module muscima.cropobject)

 	STAFF_CROPOBJECT_CLASSES (in module muscima)

 	staffline_surroundings_mask() (in module scripts.add_staffline_symbols)

T

 	
 	to_integer_bounds() (muscima.cropobject.CropObject method)

 	top (muscima.cropobject.CropObject attribute)

 	
 	translate() (muscima.cropobject.CropObject method)

 	try_correct_crashed_json() (in module scripts.analyze_tracking_log)

U

 	
 	UID_DEFAULT_DATASET_NAMESPACE (muscima.cropobject.CropObject attribute)

 	UID_DEFAULT_DOCUMENT_NAMESPACE (muscima.cropobject.CropObject attribute)

 	
 	UID_DELIMITER (muscima.cropobject.CropObject attribute)

 	unique_logs() (in module scripts.analyze_tracking_log)

V

 	
 	validate() (muscima.dataset.CVC_MUSCIMA method)

 	validate_cropobjects_graph_structure() (in module muscima.io)

 	
 	validate_document_graph_structure() (in module muscima.io)

 	validate_edge() (muscima.grammar.DependencyGrammar method)

 	validate_graph() (muscima.grammar.DependencyGrammar method)

W

 	
 	WILDCARD (muscima.grammar.DependencyGrammar attribute)

MUSCIMA++ Tutorial

This is a tutorial for using the muscima package to work with the
MUSCIMA++ dataset.

We assume you have already gone through the README and downloaded the
dataset. Let’s load it.

import os
from muscima.io import parse_cropobject_list

Change this to reflect wherever your MUSCIMA++ data lives
CROPOBJECT_DIR = os.path.join(os.environ['HOME'], 'data/MUSCIMA++/v0.9/data/cropobjects')

cropobject_fnames = [os.path.join(CROPOBJECT_DIR, f) for f in os.listdir(CROPOBJECT_DIR)]
docs = [parse_cropobject_list(f) for f in cropobject_fnames]

Let’s do something straightforward: symbol classification.

Symbol Classification

Let’s try to tell apart quarter notes from half notes.

However, notes are recorded as individual primitives in MUSCIMA++, so we
need to extract notehead-stem pairs from the data using their
relationships. Quarter notes are all full-notehead-stem pairs
with no beam or flag. Half-notes are all empty-notehead-stem
pairs.

After we extract the note classes, we will need to compute features for
classification. To do that, we first need to “draw” the symbols in the
appropriate relative positions. Then, we can extract whatever features
we need.

Finally, we train a classifier and evaluate it.

Extracting notes

Bear in mind that the outlinks are integers, only valid within the same document.
Therefore, we define a function per-document, not per-dataset.

def extract_notes_from_doc(cropobjects):
 """Finds all ``(full-notehead, stem)`` pairs that form
 quarter or half notes. Returns two lists of CropObject tuples:
 one for quarter notes, one of half notes.

 :returns: quarter_notes, half_notes
 """
 _cropobj_dict = {c.objid: c for c in cropobjects}

 notes = []
 for c in cropobjects:
 if (c.clsname == 'notehead-full') or (c.clsname == 'notehead-empty'):
 _has_stem = False
 _has_beam_or_flag = False
 stem_obj = None
 for o in c.outlinks:
 _o_obj = _cropobj_dict[o]
 if _o_obj.clsname == 'stem':
 _has_stem = True
 stem_obj = _o_obj
 elif _o_obj.clsname == 'beam':
 _has_beam_or_flag = True
 elif _o_obj.clsname.endswith('flag'):
 _has_beam_or_flag = True
 if _has_stem and (not _has_beam_or_flag):
 # We also need to check against quarter-note chords.
 # Stems only have inlinks from noteheads, so checking
 # for multiple inlinks will do the trick.
 if len(stem_obj.inlinks) == 1:
 notes.append((c, stem_obj))

 quarter_notes = [(n, s) for n, s in notes if n.clsname == 'notehead-full']
 half_notes = [(n, s) for n, s in notes if n.clsname == 'notehead-empty']
 return quarter_notes, half_notes

qns_and_hns = [extract_notes_from_doc(cropobjects) for cropobjects in docs]

Now, we don’t need the objid anymore, so we can lump the notes from
all 140 documents together.

import itertools
qns = list(itertools.chain(*[qn for qn, hn in qns_and_hns]))
hns = list(itertools.chain(*[hn for qn, hn in qns_and_hns]))

len(qns), len(hns)

(4320, 1181)

It seems that we have some 4320 isolated quarter notes and 1181 isolated
half-notes in our data. Let’s create their images now.

Creating note images

Each notehead and stem CropObject has its own mask and its bounding box
coordinates. We need to combine these two things, in order to create a
binary image of the note.

import numpy

def get_image(cropobjects, margin=1):
 """Paste the cropobjects' mask onto a shared canvas.
 There will be a given margin of background on the edges."""

 # Get the bounding box into which all the objects fit
 top = min([c.top for c in cropobjects])
 left = min([c.left for c in cropobjects])
 bottom = max([c.bottom for c in cropobjects])
 right = max([c.right for c in cropobjects])

 # Create the canvas onto which the masks will be pasted
 height = bottom - top + 2 * margin
 width = right - left + 2 * margin
 canvas = numpy.zeros((height, width), dtype='uint8')

 for c in cropobjects:
 # Get coordinates of upper left corner of the CropObject
 # relative to the canvas
 _pt = c.top - top + margin
 _pl = c.left - left + margin
 # We have to add the mask, so as not to overwrite
 # previous nonzeros when symbol bounding boxes overlap.
 canvas[_pt:_pt+c.height, _pl:_pl+c.width] += c.mask

 canvas[canvas > 0] = 1
 return canvas

qn_images = [get_image(qn) for qn in qns]
hn_images = [get_image(hn) for hn in hns]

Let’s visualize some of these notes, to check whether everything worked.
(For this, we assume you have matplotlib. If not, you can skip this
step.)

import matplotlib.pyplot as plt

def show_mask(mask):
 plt.imshow(mask, cmap='gray', interpolation='nearest')
 plt.show()

def show_masks(masks, row_length=5):
 n_masks = len(masks)
 n_rows = n_masks // row_length + 1
 n_cols = min(n_masks, row_length)
 fig = plt.figure()
 for i, mask in enumerate(masks):
 plt.subplot(n_rows, n_cols, i+1)
 plt.imshow(mask, cmap='gray', interpolation='nearest')
 # Let's remove the axis labels, they clutter the image.
 for ax in fig.axes:
 ax.set_yticklabels([])
 ax.set_xticklabels([])
 ax.set_yticks([])
 ax.set_xticks([])
 plt.show()

show_masks(qn_images[:25])
show_masks(hn_images[:25])

[image: _images/output_12_0.png]
[image: _images/output_12_1.png]
It seems that the extraction went all right.

Feature Extraction

Now, we need to somehow turn the note images into classifier inputs.

Let’s get some inspiration from the setup of the HOMUS dataset. In their
baseline classification experiments, the authors just resized their
images to 20x20. For notes, however, this may not be such a good idea,
because it will make them too short. Let’s instead resize to 40x10.

from skimage.transform import resize

qn_resized = [resize(qn, (40, 10)) for qn in qn_images]
hn_resized = [resize(hn, (40, 10)) for hn in hn_images]

And re-binarize, to compensate for interpolation effects
for qn in qn_resized:
 qn[qn > 0] = 1
for hn in hn_resized:
 hn[hn > 0] = 1

How do the resized notes look?

show_masks(qn_resized[:25])
show_masks(hn_resized[-25:])

[image: _images/output_17_0.png]
[image: _images/output_17_1.png]

Classification

We now need to add the output labels and make a train-dev-test split out
of this.

Let’s make a balanced dataset, to keep things simpler.

Randomly pick an equal number of quarter-notes.
n_hn = len(hn_resized)
import random
random.shuffle(qn_resized)
qn_selected = qn_resized[:n_hn]

Now, create the output labels and merge the data into one dataset.

Q_LABEL = 1
H_LABEL = 0

qn_labels = [Q_LABEL for _ in qn_selected]
hn_labels = [H_LABEL for _ in hn_resized]

notes = qn_selected + hn_resized
Flatten data
notes_flattened = [n.flatten() for n in notes]
labels = qn_labels + hn_labels

Let’s use the sklearn package for experimental setup. Normally, we
would do cross-validation on data of this small size, but for the
purposes of the tutorial, we will stick to just one train/test split.

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(
 notes_flattened, labels, test_size=0.25, random_state=42,
 stratify=labels)

What could we use to classify this data? Perhaps a k-NN classifier might
work.

from sklearn.neighbors import KNeighborsClassifier

K=5

Trying the defaults first.
clf = KNeighborsClassifier(n_neighbors=K)
clf.fit(X_train, y_train)

KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski',
 metric_params=None, n_jobs=1, n_neighbors=5, p=2,
 weights='uniform')

Let’s run the classifier now and evaluate the results.

y_test_pred = clf.predict(X_test)

from sklearn.metrics import classification_report
print(classification_report(y_test, y_test_pred, target_names=['half', 'quarter']))

 precision recall f1-score support

 half 0.98 0.87 0.92 296
 quarter 0.88 0.98 0.93 295

avg / total 0.93 0.93 0.93 591

NOT BAD.

Apparently, most mistakes happen when half-notes are classified as
quarter-notes. Also, remember that we made the train/test split
randomly, so there are almost certainly notes from each writer both in
the test set and in the training data. This is ripe picking for the kNN
classifier.

Can we perhaps quantify that effect?

…and that is beyond the scope of this tutorial.

muscima

	muscima package
	Submodules
	muscima.cropobject module

	muscima.cropobject_class module

	muscima.dataset module
	Environmental variables

	muscima.grammar module

	muscima.io module
	Data formats

	Module contents

	scripts package
	Submodules
	scripts.add_staff_relationships module

	scripts.add_staffline_symbols module

	scripts.analyze_agreement module
	Alignment algorithm

	Computing the output f-score

	scripts.analyze_annotations module
	Functionality

	scripts.analyze_tracking_log module

	scripts.classes2mlclasslist module
	Colors

	scripts.get_images_from_muscima module

	scripts.infer_pitches module
	Assumptions

	Representation

	Module contents

muscima.cropobject module

This module implements a Python representation of the CropObject,
the basic unit of annotation. See the CropObject documentation.

	
class muscima.cropobject.CropObject(objid, clsname, top, left, width, height, outlinks=None, inlinks=None, mask=None, uid=None, data=None)

	Bases: object

One annotated object.

The CropObject represents one instance of an annotation. It implements
the following attributes:

	objid: the unique number of the given annotation instance in the set
of annotations encoded in the containing CropObjectList.

	uid: the global unique identifier of the annotation instance. String.
See CropObject.parse_uid() method for format details.

	clsname: the name of the label that was given to the annotation
(this is the human-readable string such as notehead-full).

	top: the vertical dimension (row) of the upper left corner pixel.

	left: the horizontal dimension (column) of the upper left corner pixel.

	bottom: the vertical dimension (row) of the lower right corner pixel + 1,
so that you can index the corresponding image rows using
img[c.top:c.bottom].

	right: the horizontal dimension (row) of the lower right corner pixel + 1,
so that you can index the corresponding image columns using
img[:, c.left:c.right].

	width: the amount of rows that the CropObject spans.

	height: the amount of columns that the CropObject spans.

	mask: a binary (0/1) numpy array that denotes the area within the
CropObject’s bounding box (specified by top, left, height
and width) that the CropObject actually occupies. If the mask is
None, the object is understood to occupy the entire bounding box.

	data: a dictionary that can be empty, or can contain anything. It is
generated from the optional <Data> element of a CropObject.

Constructing a simple CropObject that consists of the “b”-like flat music
notation symbol (never mind the uid for now):

>>> top = 10
>>> left = 15
>>> height = 10
>>> width = 4
>>> mask = numpy.array([[1, 1, 0, 0],
... [1, 0, 0, 0],
... [1, 0, 0, 0],
... [1, 0, 0, 0],
... [1, 0, 1, 1],
... [1, 1, 1, 1],
... [1, 0, 0, 1],
... [1, 0, 1, 1],
... [1, 1, 1, 0],
... [0, 1, 0, 0]])
>>> clsname = 'flat'
>>> uid = 'MUSCIMA++_1.0___muscima.cropobject.CropObject.doctest___0'
>>> c = CropObject(objid=0, clsname=clsname,
... top=top, left=left, height=height, width=width,
... inlinks=[], outlinks=[],
... mask=mask,
... uid=uid)

CropObjects can also form graphs, using the following attributes:

	outlinks: Outgoing edges. A list of integers; it is assumed they are
valid objid within the same global/doc namespace.

	inlinks: Incoming edges. A list of integers; it is assumed they are
valid objid within the same global/doc namespace.

So far, CropObject graphs do not support multiple relationship types.

Unique identification

The uid serves to identify the CropObject uniquely,
at least within the MUSCIMA dataset system. (We anticipate further
versions of the dataset, and need to plan for that.)

To uniquely identify a CropObject, we need three “levels”:

	The “global”, dataset-level identification: which dataset is this
CropObject coming from? (For this dataset: MUSCIMA++_1.0)

	The “local”, document-level identification: which document
(within the given dataset) is this CropObject coming from?
For MUSCIMA++ 1.0, this will usually be a string like
CVC-MUSCIMA_W-35_N-08_D-ideal, derived from the filename
under which the CropObjectList containing the given CropObject
is stored.

	The within-document identification, which is identical
to the objid.

These three components are joined together into one string by
a delimiter: ___

The full uid of a CropObject then might look like this:

MUSCIMA-pp_1.0___CVC-MUSCIMA_W-35_N-08_D-ideal___611

You will need to use UIDs whenever you are combining CropObjects
from different documents, and/or datasets. (If you are really combining
datasets, make sure you know what you are doing – some annotation
instructions may change between versions, so objects of the same class
might not exactly correspond to each other…) The dataset and document
names are available through appropriate instance attributes:

>>> c.doc
'muscima.cropobject.CropObject.doctest'
>>> c.dataset
'MUSCIMA++_1.0'

If you supply no uid at initialization time, a default UID will
be used:

>>> c.default_uid
'MUSCIMA_DEFAULT_DATASET_PLACEHOLDER___default-document___0'

(Don’t abuse the default, though! It’s intended just for transitioning
documents without UIDs to those that have them.)

On the other hand, the objid is a field intended to uniquely identify
a CropObject within the scope of one CropObject list (one annotation
document).

Caution

The scope of unique identification within MUSCIMA++ is only within
a <CropObjectList>. Don’t use objid to mix CropObjects from
multiple files!

CropObjects and images

CropObjects and images are not tightly bound. This is because the same
object can apply to multiple images: in the case of the CVC-MUSCIMA dataset,
for example, the same CropObjects are present both in the full image
and in the staff-less image. The limitation here is that CropObjects
are based on exact pixels, so in order to retain validity, the images
must correspond to each other exactly, as “layers”.

Because CropObjects do not correspond to any given image, there is
no facility in the data format to link them to a specific one. You have to
take care of matching CropObject annotations to the right images by yourself.

The CropObject class implements some interactions with images.

To recover the area corresponding to a CropObject c, use:

>>> if c.mask is not None: crop = img[c.top:c.bottom, c.left:c.right] * c.mask
>>> if c.mask is None: crop = img[c.top:c.bottom, c.left:c.right]

Because this is clunky, we have implemented the following to get the crop:

>>> crop = c.project_to(img)

And to get the CropObject projected onto the entire image:

>>> crop = c.project_on(img)

Above, note the multiplicative role of the mask: while we typically would
expect the mask to be binary, in principle, this is not strictly necessary.
You could supply a different mask interpration, such as probabilistic.
However, we strongly advise not to misuse this feature unless you have
a really good reason; remember that the CropObject is supposed to represent
an annotation of a given image. (One possible use for a non-binary mask
that we can envision is aggregating multiple annotations of the same
image.)

For visualization, there is a more sophisticated method that renders
the CropObject as a transparent colored transparent rectangle over
an RGB image. (NOTE: this really changes the input image!)

>>> c_obj.render(img)
>>> plt.imshow(img); plt.show()

However, CropObject.render() currently does not support rendering
the mask.

Disambiguating class names

Since the class names are present
through the clsname attribute (<MLClassName> element),
matching the list is no longer necessary for general understanding
of the file. The MLClassList file serves as a disambiguation tool:
there may be multiple annotation projects that use the same names
but maybe define them differently and use different guidelines,
and their respective MLClassLists allow you to interpret the symbol
names correctly, in light of the corresponding set of definitions.

Note

In MUSCIMarker, the MLClassList is currently necessary to define
how CropObjects are displayed: their color. (All noteheads are red,
all barlines are green, etc.) The other function, matching names
to clsid, has been superseeded by the clsname CropObject
attribute.

Merging CropObjects

To merge a list of CropObjects into a new one, you need to:

	Compute the new object’s bounding box: croobjects_merge_bbox()

	Compute the new object’s mask: cropobjects_merge_mask()

	Determine the clsid and objid of the new object.

Since objid and clsid of merges may depend on external settings
and generally cannot be reliably determined from the merged
objects themselves (e.g. the merge of a notehead and a stem
should be a new note symbol), you need to supply them externally.
However, the bounding box and mask can be determined. The bounding
box is computed simply as the smallest bounding box that
encompasses all the CropObjects, and the mask is an OR operation
over the individual masks (or None, if the CropObjects don’t
have masks). Note that the merge cannot deal with a situation
where only some of the objects have a mask.

Implementation notes on the mask

The mask is a numpy array that will be saved using run-length encoding.
The numpy array is first flattened, then runs of successive 0’s and 1’s
are encoded as e.g. 0:10 for a run of 10 zeros.

How much space does this take?

Objects tend to be relatively convex, so after flattening, we can expect
more or less two runs per row (flattening is done in C order). Because
each run takes (approximately) 5 characters, each mask takes roughly 5 * n_rows
bytes to encode. This makes it efficient for objects wider than 5 pixels, with
a compression ratio approximately n_cols / 5.
(Also, the numpy array needs to be made C-contiguous for that, which
explains the order='C' hack in set_mask().)

	
UID_DEFAULT_DATASET_NAMESPACE = 'MUSCIMA_DEFAULT_DATASET_PLACEHOLDER'

	

	
UID_DEFAULT_DOCUMENT_NAMESPACE = 'default-document'

	

	
UID_DELIMITER = '___'

	

	
bbox_intersection(bounding_box)

	Returns the sub-bounding box of this CropObject, relative to its size (so: 0,0
is the CropObject’s upper left corner), that intersects the given bounding box.
If the intersection is empty, returns None.

>>> c = CropObject(0, 'test', 10, 100, height=20, width=10)
>>> c.bounding_box
(10, 100, 30, 110)
>>> other_bbox = 20, 100, 40, 105
>>> c.bbox_intersection(other_bbox)
(10, 0, 20, 5)
>>> containing_bbox = 4, 55, 44, 115
>>> c.bbox_intersection(containing_bbox)
(0, 0, 20, 10)
>>> contained_bbox = 12, 102, 22, 108
>>> c.bbox_intersection(contained_bbox)
(2, 2, 12, 8)
>>> non_overlapping_bbox = 0, 0, 3, 3
>>> c.bbox_intersection(non_overlapping_bbox) is None
True

	
static bbox_to_integer_bounds(ftop, fleft, fbottom, fright)

	Rounds off the CropObject bounds to the nearest integer
so that no area is lost (e.g. bottom and right bounds are
rounded up, top and left bounds are rounded down).

Returns the rounded-off integers (top, left, bottom, right)
as integers.

>>> CropObject.bbox_to_integer_bounds(44.2, 18.9, 55.1, 92.99)
(44, 18, 56, 93)
>>> CropObject.bbox_to_integer_bounds(44, 18, 56, 92.99)
(44, 18, 56, 93)

	
bottom

	Row coordinate 1 beyond bottom right corner, so that indexing
in the form img[c.top:c.bottom] is possible.

	
bounding_box

	The top, left, bottom, right tuple of the CropObject’s
coordinates.

	
static build_uid(global_name, document_name, numid)

	

	
contains(bounding_box_or_cropobject)

	Check if this CropObject entirely contains the other bounding
box (or, the other cropobject’s bounding box).

	
crop_to_mask()

	Crops itself to the minimum bounding box that contains all
its pixels, as determined by its mask.

If the mask is all zeros, does not do anything, because
at this point, the is_empty check should be invoked anyway
in any situation where you care whether the object is empty
or not (e.g. delete it after trimming).

>>> mask = numpy.zeros((20, 10))
>>> mask[5:15, 3:8] = 1
>>> c = CropObject(0, 'test', 10, 100, width=10, height=20, mask=mask)
>>> c.bounding_box
(10, 100, 30, 110)
>>> c.crop_to_mask()
>>> c.bounding_box
(15, 103, 25, 108)
>>> c.height, c.width
(10, 5)

Assumes integer bounds, which is ensured during CropObject initialization.

	
data_display_text()

	

	
dataset

	Which dataset is this CropObject coming from?
For bookkeeping.

	
decode_mask(mask_string, shape)

	Decodes a CropObject mask string into a binary
numpy array of the given shape.

	
static decode_mask_bitmap(mask_string, shape)

	Decodes the mask array from the encoded form to the 2D numpy array.

	
static decode_mask_rle(mask_string, shape)

	Decodes the mask array from the RLE-encoded form
to the 2D numpy array.

	
default_uid

	Constructs the default uid that the CropObject would
have, unless one was supplied at initialization.

>>> c.default_uid
'MUSCIMA_DEFAULT_DATASET_PLACEHOLDER___default-document___0'

	
doc

	Which document within the dataset is this CropObject
coming from? The _document_namespace

This is important when working with CropObjects
from multiple CropObjectList files, especially for properly
constructing CropObject graphs, because inlinks and
outlinks use the numeric objids, which point to
CropObjects within the same document.

objid of each CropObject has to be unique within a document.

	
encode_data(data)

	

	
encode_mask(mask, compress=False, mode='rle')

	Encode a binary array mask as a string, compliant
with the CropObject format specification in muscima.io.

	
static encode_mask_bitmap(mask, compress=False)

	Encodes the mask array in a compact form. Returns ‘None’ if mask
is None. If the mask is not None, uses the following algorithm:

	Flatten the mask (then use width and height of CropObject for
reshaping).

	Record as string, with whitespace separator

	Compress string using gz2 (if compress=True) NOT IMPLEMENTED

	Return resulting string

	
static encode_mask_rle(mask, compress=False)

	Encodes the mask array in Run-Length Encoding. Instead of
having the bitmap 0 0 1 1 1 0 0 0 1 1, the RLE encodes
the mask as 0:2 1:3 0:3 1:2. This is much more compact.

Currently, the rows of the mask are not treated in any special
way. The mask just gets flattened and then encoded.

Implementation:

	
get_inlink_objects(cropobjects)

	Out of the given cropobject list, return a list
of those from which this CropObject has inlinks.

Can deal with CropObjects from multiple documents.

	
get_outlink_objects(cropobjects)

	Out of the given cropobject list, return a list
of those to which this CropObject has outlinks.

Can deal with CropObjects from multiple documents.

	
inlink_uids

	

	
is_empty

	A CropObject is empty if it is composed of zero pixels.
This is measured through the mask. CropObjects without
a mask are assumed to be non-empty.

	
join(other)

	CropObject “addition”: performs an OR on this
and the other CropObjects’ masks and bounding boxes,
and assigns to this CropObject the result. Merges
also the inlinks and outlinks.

Works only if the document spaces for both CropObjects
are the same. (Otherwise changes nothing.)

The clsname of the other is ignored.

	
left

	Column coordinate of upper left corner.

	
middle

	Returns the integer representation of where the middle
of the CropObject lies, as a (m_vert, m_horz) tuple.

The integers just get rounded down.

	
outlink_uids

	

	
overlaps(bounding_box_or_cropobject)

	Check whether this CropObject overlaps the given bounding box or CropObject.

>>> c = CropObject(0, 'test', 10, 100, height=20, width=10)
>>> c.bounding_box
(10, 100, 30, 110)
>>> c.overlaps((10, 100, 30, 110)) # Exact match
True
>>> c.overlaps((0, 100, 8, 110)) # Row mismatch
False
>>> c.overlaps((10, 0, 30, 89)) # Column mismatch
False
>>> c.overlaps((0, 0, 8, 89)) # Total mismatch
False
>>> c.overlaps((9, 99, 31, 111)) # Encompasses CropObject
True
>>> c.overlaps((11, 101, 29, 109)) # Within CropObject
True
>>> c.overlaps((9, 101, 31, 109)) # Encompass horz., within vert.
True
>>> c.overlaps((11, 99, 29, 111)) # Encompasses vert., within horz.
True
>>> c.overlaps((11, 101, 31, 111)) # Corner within: top left
True
>>> c.overlaps((11, 99, 31, 109)) # Corner within: top right
True
>>> c.overlaps((9, 101, 29, 111)) # Corner within: bottom left
True
>>> c.overlaps((9, 99, 29, 109)) # Corner within: bottom right
True

	
parse_uid()

	Parse the unique identifier of the CropObject. This
breaks down the UID into the global namespace, document
namespace (ie. CropObjectList name – usually per image),
and the numeric ID of the CropObject within one CropObjectList.
This numeric ID should always match the objid, which
acts as the “technical” identifier, since it is known to be
an integer and therefore usable for e.g. indexing within
the MUSCIMarker annotation app.

See _parse_uid() for format & test. Compared
to _parse_uid(), this method checks the parsed num
in the uid against this CropObject’s objid,
to verify that the UID is really valid for this object.

The delimiter is expected to be ___
(kept as CropObject.UID_DELIMITER)

	
project_on(img)

	This function returns only those parts of the input image
that correspond to the CropObject and masks out everything else
with zeros. The dimension of the returned array is the same
as of the input image. This function basically reconstructs
the symbol as an indicator function over the pixels of
the annotated image.

	
project_to(img)

	This function returns the crop of the input image
corresponding to the CropObject (incl. masking).
Assumes zeros are background.

	
render(img, alpha=0.3, rgb=(1.0, 0.0, 0.0))

	Renders itself upon the given image as a rectangle
of the given color and transparency. Might help visualization.

	Parameters

	img – A three-channel image (3-D numpy array,
with the last dimension being 3).

	
right

	Column coordinate 1 beyond bottom right corner, so that indexing
in the form img[:, c.left:c.right] is possible.

	
scale(zoom=1.0)

	Re-compute the CropObject with the given scaling factor.

	
set_dataset(dataset_name)

	

	
set_doc(docname)

	

	
set_mask(mask)

	Sets the CropObject’s mask to the given array. Performs
some compatibilty checks: size, dtype (converts to uint8).

	
set_objid(objid)

	Changes the objid and updates the UID with it.
Do NOT use this unless you know what you’re doing;
changing the objid should be (1) checked against objid
conflics within the doc, (2) reflected in the outlinks
and inlinks.

	
set_uid(uid)

	Assigns the given uid to the CropObject. This is the way
to do it, do not assign directly to cropobject.uid! You need
to update other things (and perform integrity checks) when changing
the unique ID! See CropObject class documentation for
information on how uid attributes work.

Do NOT use this function, unless you know what you are doing!
You could mess up the integrity of your copy of the dataset, and
you’d have to download it again…

	
to_integer_bounds()

	Ensures that the CropObject has an integer position and size.
(This is important whenever you want to use a mask, and reasonable
whenever you do not need sub-pixel resolution…)

	
top

	Row coordinate of upper left corner.

	
translate(down=0, right=0)

	Move the cropobject down and right by the given amount of pixels.

	
muscima.cropobject.bbox_dice(bbox_this, bbox_other, vertical=False, horizontal=False)

	Compute the Dice coefficient (intersection over union)
for the given two bounding boxes.

	Parameters

	
	vertical – If set, will only return vertical IoU.

	horizontal – If set, will only return horizontal IoU.
If both vertical and horizontal are set, will return
normal IoU, as if they were both false.

	
muscima.cropobject.bbox_intersection(bbox_this, bbox_other)

	Returns the t, l, b, r coordinates of the sub-bounding box
of bbox_this that is also inside bbox_other.
If the bounding boxes do not overlap, returns None.

	
muscima.cropobject.cropobject_distance(c, d)

	Computes the distance between two CropObjects.
Their minimum vertical and horizontal distances are each taken
separately, and the euclidean norm is computed from them.

	
muscima.cropobject.cropobject_mask_rpf(cropobject_gt, cropobject_pred)

	Compute the recall, precision and f-score of the predicted
cropobject’s mask against the ground truth cropobject’s mask.

	
muscima.cropobject.cropobjects_merge(fr, to, clsname, objid)

	Merge the given CropObjects with respect to the other.
Returns the new CropObject (without modifying any of the inputs).

	
muscima.cropobject.cropobjects_merge_bbox(cropobjects)

	Computes the bounding box of a CropObject that would
result from merging the given list of CropObjects.

	
muscima.cropobject.cropobjects_merge_links(cropobjects)

	Collect all inlinks and outlinks of the given set of CropObjects
to CropObjects outside of this set. The rationale for this is that
these given cropobjects will be merged into one, so relationships
within the set would become loops and disappear.

(Note that this is not sufficient to update the relationships upon
a merge, because the affected CropObjects outside the given set
will need to have their inlinks/outlinks redirected to the new object.)

	Returns

	A tuple of lists: (inlinks, outlinks)

	
muscima.cropobject.cropobjects_merge_mask(cropobjects, intersection=False)

	Merges the given list of cropobjects into one. Masks are combined
by an OR operation.

>>> c1 = CropObject(0, 'name', 10, 10, 4, 1, mask=numpy.ones((1, 4), dtype='uint8'))
>>> c2 = CropObject(1, 'name', 11, 10, 6, 1, mask=numpy.ones((1, 6), dtype='uint8'))
>>> c3 = CropObject(2, 'name', 9, 14, 2, 4, mask=numpy.ones((4, 2), dtype='uint8'))
>>> c = [c1, c2, c3]
>>> m1 = cropobjects_merge_mask(c)
>>> m1.shape
(4, 6)
>>> print(m1)
[[0 0 0 0 1 1]
 [1 1 1 1 1 1]
 [1 1 1 1 1 1]
 [0 0 0 0 1 1]]

Mask behavior: if at least one of the cropobjects has a mask, then
masking behavior is activated. The masks are combined using OR: any
pixel of the resulting merged cropobject that corresponds to a True
mask pixel in one of the input cropobjects will get a True mask value,
all others (ie. including all intermediate areas) will get a False.

If no input cropobject has a mask, then the resulting cropobject
also will not have a mask.

If some cropobjects have masks and some don’t, fails.

	Parameters

	intersection – Instead of a union, return the mask
intersection: only those pixels which are common to all
the cropobjects.

	
muscima.cropobject.cropobjects_merge_multiple(cropobjects, clsname, objid)

	Merge multiple cropobjects. Does not modify any of the inputs.

	
muscima.cropobject.cropobjects_on_canvas(cropobjects, margin=10)

	Draws all the given CropObjects onto a zero background.
The size of the canvas adapts to the CropObjects, with the
given margin.

Also returns the top left corner coordinates w.r.t. CropObjects’ bboxes.

	
muscima.cropobject.link_cropobjects(fr, to, check_docname=True)

	Add a relationship from the fr CropObject
to the to CropObject. Modifies the CropObjects
in-place.

If the objects are already linked, does nothing.

	Parameters

	check_docname – If set, checks for docname
match and raises a ValueError if the CropObjects
come from different documents.

	
muscima.cropobject.merge_cropobject_lists(*cropobject_lists)

	Combines the CropObject lists from different documents
into one list, so that inlink/outlink references still work.
This is useful only if you want to merge two documents
into one (e.g., if your annotators worked on different “layers”
of data, and you want to merge these annotations).

This just means shifting the objid (and thus inlinks
and outlinks). It is assumed the lists pertain to the same
image. Uses deepcopy to avoid exposing the original lists
to modification through the merged list.

Warning

If you are ever exporting the merged list, make sure to
set the uid for the outputs correctly, if you want
to create a new document.

Warning

Currently cannot handle precedence edges.

	
muscima.cropobject.split_cropobject_on_connected_components(c, next_objid)

	Split the CropObject into one object per connected component
of the mask. All inlinks/outlinks are retained in all the newly
created CropObjects, and the old object is not changed. (If there
is only one connected component, the object is returned unchanged
in a list of length 1.)

An objid must be provided at which to start numbering the newly
created CropObjects.

The data attribute is also retained.

muscima.cropobject_class module

This module implements the CropObjectClass, which
represents one possible CropObject class, such as
a notehead or a time signature. Aside from defining the “vocabulary”
of available object classes for annotation, it also contains
some information about how objects of the given class should
be displayed in the MUSCIMarker annotation software (ordering
related object classes together in menus, implementing a sensible
color scheme, etc.). There is nothing interesting about this class,
we pulled it into the muscima package because the object
grammar (i.e. which relationships are allowed and which are not)
depends on having CropObjectClass object as its “vocabulary”,
and you will probably want to manipulate the data somehow based
on the objects’ relationships (like reassembling notes from notation
primitives: notehead plus stem plus flags…), and the grammar
file is a reference for doing that.

CropObjectClass is a plain old data class, nothing interesting
about it. The only catch is that colors for rendering
in MUSCIMarker are kept as a #RRGGBB string in the XML
file, but represented in the CropObjectClass.color attribute
as a triplet of floats between 0 (00) and 255 (ff).

The ___str__() method of the class will output the correct
XML representation.

XML example

This is what a single CropObjectClass element might look like:

<CropObjectClass>
 <Id>1</Id>
 <Name>notehead-empty</Name>
 <GroupName>note-primitive/notehead-empty</GroupName>
 <Color>#FF7566</Color>
 </CropObjectClass>

See e.g. test/test_data/mff-muscima-classes-annot.xml,
which is incidentally the real CropObjectClass list used
for annotating MUSCIMA++.

	
class muscima.cropobject_class.CropObjectClass(clsid, name, group_name, color)

	Bases: object

Information about the annotation class. We’re using it
mostly to get the color of rendered CropObjects.

CropObjectClass is a Plain Old Data class, there is no other
functionality beyond simply existing and writing itself
out in the appropriate XML format.

	
muscima.cropobject_class.hex2rgb(hstr)

	Parse a hex-coded color like ‘#AA0202’ into a floating-point representation.

>>> hex2rgb('#abe822')
(0.6705882352941176, 0.9098039215686274, 0.13333333333333333)

	
muscima.cropobject_class.parse_hex(hstr)

	Convert a hexadecimal number string to integer.

>>> parse_hex('33')
51
>>> parse_hex('abe8')
44008

	
muscima.cropobject_class.rgb2hex(rgb)

	Convert a floating-point representation of R, G, B values
between 0 and 1 (inclusive) to a hex string (strating with a
hashmark). Will use uppercase letters for 10 - 15.

>>> rgb = (0.6705882352941176, 0.9098039215686274, 0.13333333333333333)
>>> rgb2hex(rgb)
'#ABE822'

muscima.dataset module

This module acts as an abstraction over the dataset.

It mostly implements utility functions, like getting the absolute
path to a specific image in the CVC-MUSCIMA dataset, specified
by the writer, number, distortion, and mode.

Environmental variables

	CVC_MUSCIMA_ROOT

	MUSCIMA_PLUSPLUS_ROOT

The dataset root environmental variables are used as default roots
for retrieving the dataset files. If they are not set, you will
have to supply the roots to the respective functions that manipulate
these layers of MUSCIMA++.

	
class muscima.dataset.CVC_MUSCIMA(root=None, validate=False)

	Bases: object

The CVC_MUSCIMA class implements a wrapper around
the CVC-MUSCIMA dataset file structure that allows easy retrieval
of filenames based on the page number (1 - 20), writer number
(1 - 50), distortion, and mode (full image, staffline pixels only, or
non-staffline pixels only).

This functionality is defined in imfile().

	
DISTORTIONS = ['curvature', 'ideal', 'interrupted', 'kanungo', 'rotated', 'staffline-thickness-variation-v1', 'staffline-thickness-variation-v2', 'staffline-y-variation-v1', 'staffline-y-variation-v2', 'thickness-ratio', 'typeset-emulation', 'whitespeckles']

	

	
MODES = ['full', 'symbol', 'staff_only']

	

	
imfile(page, writer, distortion='ideal', mode='full')

	Construct the path leading to the file of the CVC-MUSCIMA image
with the specified page (1 - 20), writer (1 - 50), distortion
(see CVC_MUSCIMA_DISTORTIONS), and mode (full, symbol,
staff_only).

This is the primary interface that the CVC_MUSCIMA class provides.

	
validate(fail_early=True)

	Checks whether the instantiated CVC_MUSCIMA instance really
corresponds to the CVC-MUSCIMA dataset: all the 12 x 1000 expected
CVC-MUSCIMA files should be present.

	Parameters

	fail_early – If True, will return as soon as it encounters
a missing file, if False, will keep going through all the files
and find out which ones are missing. (Default: True)

	Returns

	True if the dataset is OK, False if any file
is missing.

muscima.grammar module

This module implements a Grammar.

A Grammar is a set of rules about how objects from a certain set
of classes are allowed to form relationships. In a dependency grammar,
the relationships are formed directly between the objects. (In
constituency grammars, we’d have a “merge result” object instead.)

In the muscima package, you can use grammars to validate
whether the relationships between the annotated objects conform
to the specification.

Warning

The grammar is not a formal specification. Music notation sometimes
breaks its own rules. More importantly, people who write music
notation by hand make mistakes. This means that not all annotation
files will pass grammar validation without errors, and that is fine.
If this bothers you, use the MUSCIMarker tool to visualize the errors.

Todo

create image:: ../doc/_static/grammar_explainer.png

	
class muscima.grammar.DependencyGrammar(grammar_filename, alphabet)

	Bases: object

The DependencyGrammar class implements rules about valid graphs above
objects from a set of recognized classes.

The Grammar complements a Parser. It defines rules, and the Parser
implements algorithms to apply these rules to some input.

A grammar has an Alphabet and Rules. The alphabet is a list
of symbols that the grammar recognizes. Rules are constraints on
the structures that can be induced among these symbols.

There are two kinds of grammars according to what kinds of rules
they use: dependency rules, and constituency rules. We use
dependency grammars. Dependency grammar rules specify which symbols
are governing, and which symbols are governed:

notehead_full | stem

There can be multiple left-hand side and right-hand side symbols,
as a shortcut for a list of rules:

notehead_full | stem beam
notehead_full notehead_empty | ledger_line duration-dot tie grace_note

The asterisk works as a wildcard. Currently, only one wildcard per symbol
is allowed:

time_signature | numeral_*

Lines starting with a # are regarded as comments and ignored.
Empty lines are also ignored.

Cardinality rules

We can also specify in the grammar the minimum and/or maximum number
of relationships, both inlinks and outlinks, that an object can form
with other objects of given types. For example:

	One notehead may have up to two stems attached.

	We also allow for stemless full noteheads.

	One stem can be attached to multiple noteheads, but at least one.

This would be expressed as:

notehead-*{,2} | stem{1,}

The relationship of noteheads to ledger lines is generally m:n:

notehead-full | ledger_line

A time signature may consist of multiple numerals, but only one
other symbol:

time_signature{1,} | numeral_*{1}
time_signature{1} | whole-time_mark alla_breve other_time_signature

A key signature may have any number of sharps and flats.
A sharp or flat can only belong to one key signature. However,
not every sharp belongs to a key signature:

key_signature | sharp{,1} flat{,1} natural{,1} double_sharp{,1} double_flat{,1}

For the left-hand side of the rule, the cardinality restrictions apply to
outlinks towards symbols of classes on the right-hand side of the rule.
For the right-hand side, the cardinality restrictions apply to inlinks
from symbols of left-hand side classes.

It is also possible to specify that regardless of where outlinks
lead, a symbol should always have at least some:

time_signature{1,} |
repeat{2,} |

And analogously for inlinks:

| letter_*{1,}
| numeral_*{1,}
| ledger_line{1,}
| grace-notehead-*{1,}

Interface

The basic role of the dependency grammar is to provide the list of rules:

>>> from muscima.io import parse_cropobject_class_list
>>> fpath = os.path.dirname(os.path.dirname(__file__)) + u'/test/test_data/mff-muscima-classes-annot.deprules'
>>> mlpath = os.path.dirname(os.path.dirname(__file__)) + u'/test/test_data/mff-muscima-classes-annot.xml'
>>> mlclass_dict = {m.name for m in parse_cropobject_class_list(mlpath)}
>>> g = DependencyGrammar(grammar_filename=fpath, alphabet=mlclass_dict)
>>> len(g.rules)
578

The grammar can validate against these rules. The workhorse of this
functionality is the find_invalid_in_graph() method, which finds
objects that have inlinks/outlinks which do not comply with the grammar,
and the non-compliant inlinks/outlinks as well.

If we have the following notation objects 0, 1, 2, and 3,
with the following symbol classes:

>>> vertices = {0: 'notehead-full', 1: 'stem', 2: '8th_flag', 3: 'notehead_empty'}

And the following relationships were recorded:

>>> edges = [(0, 1), (0, 2), (0, 3)]

We can check for errors against our music notation symbols dependency
grammar:

>>> wrong_vertices, wrong_inlinks, wrong_outlinks = g.find_invalid_in_graph(vertices=vertices, edges=edges)

Because the edge (0, 3) connects a full notehead to an empty notehead,
the method should report the objects 0 and 3 as wrong, as well
as the corresponding inlink of 3 and outlink of 0:

>>> wrong_vertices
[3, 0]
>>> wrong_inlinks
[(0, 3)]
>>> wrong_outlinks
[(0, 3)]

(Note that both the inlinks and outlinks are recorded in a (from, to)
format.)

Caution

Aside from checking against illegal relationships (such as we
saw in the example), errors can also come from too many or too
few inlinks/outlinks of a given type. However,
the validation currently implements checks only for aggregate
cardinalities, not for pair cardinalities (so, there can be
e.g. multiple sharps attached to a notehead, even though the cardinality
in the notehead | sharp rule is set to max. 1).

Grammar file formats

The alphabet is stored by means of a CropObjectClassList XML file with
CropObjectClass elements, as described in the muscima.io module.

The rules are stored in rule files, with the suffix .deprules.

A rule file line can be empty, start with a # (comment), or contain
a rule symbol |. Empty lines and comments are ignored during parsing.
Rules are split into left- and right-hand side tokens, according to
the position of the | symbol.

Parsing a token returns the token string (unexpanded wildcards), its
minimum and maximum cardinality in the rule (defaults are (0, 10000)
if no cardinality is provided).

>>> g.parse_token('notehead-*')
('notehead-*', 0, 10000)
>>> g.parse_token('notehead-*{1,5}')
('notehead-*', 1, 5)
>>> g.parse_token('notehead-*{1,}')
('notehead-*', 1, 10000)
>>> g.parse_token('notehead-*{,5}')
('notehead-*', 0, 5)
>>> g.parse_token('notehead-*{1}')
('notehead-*', 1, 1)

The wildcards are expanded at the level of a line.

>>> l = 'notehead-*{,2} | stem'
>>> rules, inlink_cards, outlink_cards, _, _ = g.parse_dependency_grammar_line(l)
>>> rules
[('notehead-empty', 'stem'), ('notehead-full', 'stem')]
>>> outlink_cards['notehead-empty'] == {'stem': (0, 2)}
True
>>> inlink_cards['stem'] == {'notehead-empty': (0, 10000), 'notehead-full': (0, 10000)}
True

A key signature can have any number of sharps, flats, or naturals,
but if a given symbol is part of a key signature, it can only be part of one.

>>> l = 'key-signature | sharp{1} flat{1} natural{1}'
>>> rules, inlink_cards, _, _, _ = g.parse_dependency_grammar_line(l)
>>> rules
[('key-signature', 'flat'), ('key-signature', 'natural'), ('key-signature', 'sharp')]
>>> inlink_cards == {'natural': {'key-signature': (1, 1)},
... 'sharp': {'key-signature': (1, 1)},
... 'flat': {'key-signature': (1, 1)}}
True

You can also give aggregate cardinality rules, of the style “whatever rule
applies, there should be at least X/at most Y edges for this type of object”.
(If no maximum is specified, the value of DependencyGrammar._MAX_CARD
is used, which is by default 10000).

>>> l = 'key-signature{1,} |'
>>> _, _, _, _, out_aggregate_cards = g.parse_dependency_grammar_line(l)
>>> out_aggregate_cards == {'key-signature': (1, 10000)}
True
>>> l = 'grace-notehead*{1,} |'
>>> _, _, _, _, out_aggregate_cards = g.parse_dependency_grammar_line(l)
>>> out_aggregate_cards == {'grace-notehead-empty': (1, 10000), 'grace-notehead-full': (1, 10000)}
True
>>> l = '| beam{1,} stem{1,} flat{1,}'
>>> _, _, _, in_aggregate_cards, _ = g.parse_dependency_grammar_line(l)
>>> in_aggregate_cards == {'stem': (1, 10000), 'beam': (1, 10000), 'flat': (1, 10000)}
True

	
WILDCARD = '*'

	

	
find_invalid_in_graph(vertices, edges, provide_reasons=False)

	Finds vertices and edges where the given object graph does
not comply with the grammar.

Wrong vertices are any that:

	are not in the alphabet;

	have a wrong inlink or outlink;

	have missing outlinks or inlinks.

Discovering missing edges is difficult, because the grammar
defines cardinalities on a per-rule basis and there is currently
no way to make a rule compulsory, or to require at least one rule
from a group to apply. It is currently not implemented.

Wrong outlinks are such that:

	connect symbol pairs that should not be connected based on their
classes;

	connect so that they exceed the allowed number of outlinks to
the given symbol type

Wrong inlinks are such that:

	connect symbol pairs that should not be connected based on their
classes;

	connect so that they exceed the allowed number of inlinks
to the given symbol based on the originating symbols’ classes.

	Parameters

	
	vertices – A dict with any keys, and values corresponding
to the alphabet of the grammar.

	edges – A list of (from, to) pairs, where both
from and to are valid keys into the vertices dict.

	provide_reasons – If set, will generate string descriptions
of each error and return them.

	Returns

	A list of vertices, a list of inlinks and a list of outlinks
that do not comply with the grammar. If provide_reasons is set,
also returns three more: dicts of written reasons for each error
(vertex, inlink, outlink).

	
inlink_aggregated_cardinalities = None

	Keys: classes, values: (min, max)

	
inlink_cardinalities = None

	Keys: classes, values: dict of {from: (min, max)}

	
is_head(head, child)

	

	
outlink_aggregated_cardinalities = None

	Keys: classes, values: (min, max)

	
outlink_cardinalities = None

	Keys: classes, values: dict of {to: (min, max)}

	
parse_dependency_grammar_line(line)

	Parse one dependency grammar line. See DependencyGrammar
I/O documentation for the full format description of valid
grammar lines.

The grammar line specifies two kinds of information: which symbol
classes may form relationships, and what the valid cardinalities
for these relationships are. For instance, while time_signature
symbols have outlinks to numeral_X symbols, one numeral cannot
be part of more than one time signature.

A grammar line has a left-hand side (lhs) and a right-hand side (rhs),
separated by the | symbol.

(See DependencyGramamr documentation for examples.)

	Parameters

	line (str) – One line of a dependency grammar rule file.

	Returns

	A quintuplet of:

	rules: a list of (from_class, to_class) tuples. Each rule tuple
encodes that relationships leading from symbols of type from_class
to symbols of type to_class may exist.

	inlink_cards: a dictionary that encodes the range of permitted cardinalities
for each RHS symbol of inlinks from the LHS symbols.

	outlink_cards: a dictionary that encodes the range of permitted cardinalities
for each LHS of outlinks to the RHS symbols.

	inlink_aggregate_cards: A dict that holds for each RHS the range of
permitted total inlink counts. E.g., a stem must always have at least one inlink.

	outlink_aggregate_cards: A dict that holds for each LHS the range
of permitted total outlink counts. E.g., a full notehead must always have
at least one outlink.

For non-grammar lines (see parse_dependency_grammar_rules()),
this method returns empty data structures.

	
parse_dependency_grammar_rules(filename)

	Returns the rules stored in the given rule file.

A dependency grammar rule file contains grammar lines,
comment lines, and other lines. A grammar line is any line that
contains the | symbol and does not have a # as the first
non-whitespace symbol.

Comment lines are those that have # as the first non-whitespace
symbol. They are ignored, even if they contain |. All other lines
that do contain | are considered to be grammar lines.

All lines that do not contain | are considered non-grammar lines
and are ignored.

	Parameters

	filename – The path to the rule file.

	Returns

	A quintuplet of the grammar rules.

	rules: a list of (from_class, to_class) tuples. Each rule tuple
encodes that relationships leading from symbols of type from_class
to symbols of type to_class may exist.

	inlink_cards: a dictionary that encodes the range of permitted cardinalities
for each RHS symbol of inlinks from the LHS symbols.

	outlink_cards: a dictionary that encodes the range of permitted cardinalities
for each LHS of outlinks to the RHS symbols.

	inlink_aggregate_cards: A dict that holds for each RHS the range of
permitted total inlink counts. E.g., a stem must always have at least one inlink.

	outlink_aggregate_cards: A dict that holds for each LHS the range
of permitted total outlink counts. E.g., a full notehead must always have
at least one outlink.

	
parse_token(l)

	Parse one *.deprules file token. See class documentation for
examples.

	Parameters

	l – One token of a *.deprules file.

	Returns

	token, cmin, cmax

	
validate_edge(head_name, child_name)

	Check whether a given head --> child edge conforms
with this grammar.

	
validate_graph(vertices, edges)

	Checks whether the given graph complies with the grammar.

	Parameters

	
	vertices – A dict with any keys and values corresponding
to the alphabet of the grammar.

	edges – A list of (from, to) pairs, where both
from and to are valid keys into the vertices dict.

	Returns

	True if the graph is valid, False otherwise.

	
exception muscima.grammar.DependencyGrammarParseError

	Bases: ValueError

muscima.io module

This module implements functions for reading and writing
the data formats used by MUSCIMA++.

Data formats

All MUSCIMA++ data is stored as XML, in <CropObject> elements.
These are grouped into <CropObjectList> elements, which are
the top-level elements in the *.xml dataset files.

The list of object classes used in the dataset is also stored as XML,
in <CropObjectClass> elements (within a <CropObjectClassList>
element).

CropObject

To read a CropObject list file (in this case, a test data file):

>>> from muscima.io import parse_cropobject_list
>>> import os
>>> file = os.path.join(os.path.dirname(__file__), '../test/test_data/01_basic.xml')
>>> cropobjects = parse_cropobject_list(file)

The CropObject string representation is a XML object:

<CropObject xml:id="MUSCIMA-pp_1.0___CVC-MUSCIMA_W-01_N-10_D-ideal___25">
 <Id>25</Id>
 <MLClassName>grace-notehead-full</MLClassName>
 <Top>119</Top>
 <Left>413</Left>
 <Width>16</Width>
 <Height>6</Height>
 <Selected>false</Selected>
 <Mask>1:5 0:11 (...) 1:4 0:6 1:5 0:1</Mask>
 <Outlinks>12 24 26</Outlinks>
 <Inlinks>13</Inlinks>
</CropObject>

The CropObjects are themselves kept as a list:

<CropObjectList>
 <CropObjects>
 <CropObject> ... </CropObject>
 <CropObject> ... </CropObject>
 </CropObjects>
</CropObjectList>

Parsing is only implemented for files that consist of a single
<CropObjectList>.

Additional information

Caution

This part may easily be deprecated.

Arbitrary data can be added to the CropObject using the optional
<Data> element. It should encode a dictionary of additional
information about the CropObject that may only apply to a subset
of CropObjects (this facultativeness is what distinguishes the
purpose of the <Data> element from just subclassing CropObject).

For example, encoding the pitch, duration and precedence information
about a notehead could look like this:

<CropObject>
 ...
 <Data>
 <DataItem key="pitch_step" type="str">D</DataItem>
 <DataItem key="pitch_modification" type="int">1</DataItem>
 <DataItem key="pitch_octave" type="int">4</DataItem>
 <DataItem key="midi_pitch_code" type="int">63</DataItem>
 <DataItem key="midi_duration" type="int">128</DataItem>
 <DataItem key="precedence_inlinks" type="list[int]">23 24 25</DataItem>
 <DataItem key="precedence_outlinks" type="list[int]">27</DataItem>
 </Data>
</CropObject

The CropObject will then contain in its data attribute
the dictionary:

self.data = {'pitch_step': 'D',
 'pitch_modification': 1,
 'pitch_octave': 4,
 'midi_pitch_code': 63,
 'midi_pitch_duration': 128,
 'precedence_inlinks': [23, 24, 25],
 'precedence_outlinks': [27]}

This is also a basic mechanism to allow you to subclass
CropObject with extra attributes without having to re-implement
parsing and export.

Warning

Do not misuse this! The <Data> mechanism is primarily
intended to encode extra information for MUSCIMarker to
display.

Unique identification of a CropObject

xml:id is a string that uniquely identifies the CropObject
in the entire dataset. It is derived from a global dataset name and version
identifier (in this case, MUSCIMA++_1.0), a CropObjectList identifier
which is unique within the dataset (derived from the filename:
usually in the format CVC-MUSCIMA_W-{:02}_N-{:02}_D-ideal),
and the number of the CropObject within the given CropObjectList
(which matches the <Id> value). The delimiter is three underscores
(___), in order to comply with XML rules for the xml:id attribute.

Individual elements of a <CropObject>

	<Id> is the integer ID of the CropObject inside a given
<CropObjectList> (which generally corresponds to one XML file
of CropObjects – one document namespace).

	<MLClassName> is the name of the object’s class (such as
notehead-full, beam, numeral_3, etc.).

	<Top> is the vertical coordinate of the upper left corner of the object’s
bounding box.

	<Left> is the horizontal coordinate of the upper left corner of
the object’s bounding box.

	<Width>: the amount of rows that the CropObject spans.

	<Height>: the amount of columns that the CropObject spans.

	<Mask>: a run-length-encoded binary (0/1) array that denotes the area
within the CropObject’s bounding box (specified by top, left,
height and width) that the CropObject actually occupies. If
the mask is not given, the object is understood to occupy the entire
bounding box. For the representation, see Implementation notes
below.

	<Inlinks>: whitespace-separate objid list, representing CropObjects
from which a relationship leads to this CropObject. (Relationships are
directed edges, forming a directed graph of CropObjects.) The objids are
valid in the same scope as the CropObject’s objid: don’t mix
CropObjects from multiple scopes (e.g., multiple CropObjectLists)!
If you are using CropObjects from multiple CropObjectLists at the same
time, make sure to check against the ``uid``s.

	<Outlinks>: whitespace-separate objid list, representing CropObjects
to which a relationship leads to this CropObject. (Relationships are
directed edges, forming a directed graph of CropObjects.) The objids are
valid in the same scope as the CropObject’s objid: don’t mix
CropObjects from multiple scopes (e.g., multiple CropObjectLists)!
If you are using CropObjects from multiple CropObjectLists at the same
time, make sure to check against the ``uid``s.

	<Data>: a list of <DataItem> elements. The elements have
two attributes: key, and type. The key is what the item
should be called in the data dict of the loaded CropObject.
The type attribute encodes the Python type of the item and gets
applied to the text of the <DataItem> to produce the value.
Currently supported types are int, float, and str,
and list[int], list[float] and list[str]. The lists
are whitespace-separated.

The parser function provided for CropObjects does not check against
the presence of other elements. You can extend CropObjects for your
own purposes – but you will have to implement parsing.

Legacy issues with X, Y, and positions

Formerly, instead of <Top> and <Left>, there was a different way
of marking CropObject position:

	<X> was the HORIZONTAL coordinate of the object’s upper left corner.

	<Y> was the VERTICAL coordinate of the object’s upper left corner.

Due to legacy issues, the <X> in the XML file recorded the horizontal
position (column) and <Y> recorded the vertical position (row). However,
a CropObject instance uses these attributes in the more natural sense:
cropobject.x is the top coordinate, cropobject.y is the bottom
coordinate.

This was unfortunate, and mostly caused by ambiguity of what X and Y mean.
So, the definition of the XML changed: instead of storing nondescript letters,
we will use tags <Top> and <Left>. Note that we also swapped the order:
where previously the ordering was <X> (left) first and <Y> (top)
second, we make <Top> first and <Left> second. This corresponds
to how 2-D numpy arrays are indexed: row first, column second.

You may still run into CropObjectList files that use <X> and <Y>.
The function for reading CropObjectList files, parse_cropobject_list(),
can deal with it and correctly assign the coordinates, but the CropObjects
will be exported with <Top> and <Left>. (This may break some
there-and-back reencoding tests.)

Implementation notes on the mask

The mask is a numpy array that will be saved using run-length encoding.
The numpy array is first flattened, then runs of successive 0’s and 1’s
are encoded as e.g. ``0:10 `` for a run of 10 zeros.

How much space does this take?

Objects tend to be relatively convex, so after flattening, we can expect
more or less two runs per row (flattening is done in C order). Because
each run takes (approximately) 5 characters, each mask takes roughly 5 * n_rows
bytes to encode. This makes it efficient for objects wider than 5 pixels, with
a compression ratio approximately n_cols / 5.
(Also, the numpy array needs to be made C-contiguous for that, which
explains the CROPOBJECT_MASK_ORDER=’C’ hack in set_mask().)

CropObjectClass

This is what a single CropObjectClass element might look like:

<CropObjectClass>
 <Id>1</Id>
 <Name>notehead-empty</Name>
 <GroupName>note-primitive/notehead-empty</GroupName>
 <Color>#FF7566</Color>
 </CropObjectClass>

See e.g. test/test_data/mff-muscima-classes-annot.xml,
which is incidentally the real CropObjectClass list used
for annotating MUSCIMA++.

Similarly to a <CropObjectList>, the <CropObjectClass>
elements are organized inside a <CropObjectClassList>:

<CropObjectClassList>
 <CropObjectClasses>
 <CropObjectClass> ... </CropObjectClass>
 <CropObjectClass> ... </CropObjectClass>
 </CropObjectClasses>
 </CropObjectClassesList>

The CropObjectClass represents one possible CropObject
symbol class, such as a notehead or a time signature. Aside from defining
the “vocabulary” of available object classes for annotation, it also contains
some information about how objects of the given class should
be displayed in the MUSCIMarker annotation software (ordering
related object classes together in menus, implementing a sensible
color scheme, etc.). There is nothing interesting about this class,
we pulled it into the muscima package because the object
grammar (i.e. which relationships are allowed and which are not)
depends on having CropObjectClass object as its “vocabulary”,
and you will probably want to manipulate the data somehow based
on the objects’ relationships (like reassembling notes from notation
primitives: notehead plus stem plus flags…), and the grammar
file is a reference for doing that.

	
muscima.io.export_cropobject_class_list(cropobject_classes)

	Writes the CropObject data as a XML string. Does not write
to a file – use with open(output_file) as out_stream: etc.

	Parameters

	cropobjects – A list of CropObject instances.

	
muscima.io.export_cropobject_graph(cropobjects, validate=True)

	Collects the inlink/outlink CropObject graph
and returns it as a list of (from, to) edges.

	Parameters

	
	cropobjects – A list of CropObject instances.
All are expected to be within one document.

	validate – If set, will raise a ValueError
if the graph defined by the CropObjects is
invalid.

	Returns

	A list of (from, to) objid pairs
that represent edges in the CropObject graph.

	
muscima.io.export_cropobject_list(cropobjects, docname=None, dataset_name=None)

	Writes the CropObject data as a XML string. Does not write
to a file – use with open(output_file) as out_stream: etc.

	Parameters

	
	cropobjects – A list of CropObject instances.

	docname – Set the document name for all the CropObject
unique IDs to this. If not given, no docname is applied.
This means that either the old document identification
stays (in case the CropObjects are loaded from a file
with document IDs set), or the default is used (if the
CropObjects have been newly created). If given,
the CropObjects are first deep-copied, so that the existing
objects’ UID is not affected by the export.

	dataset_name – Analogous to docname.

	
muscima.io.parse_cropobject_class_list(filename)

	From a xml file with a MLClassList as the top element,
extract the list of CropObjectClass objects. Use
this

	
muscima.io.parse_cropobject_list(filename)

	From a xml file with a CropObjectList as the top element, parse
a list of CropObjects. (See CropObject class documentation
for a description of the XMl format.)

Let’s test whether the parsing function works:

>>> test_data_dir = os.path.join(os.path.dirname(os.path.dirname(__file__)),
... 'test', 'test_data',
... 'cropobjects_xy_vs_topleft')
>>> clfile = os.path.join(test_data_dir, '01_basic_topleft.xml')
>>> cropobjects = parse_cropobject_list(clfile)
>>> len(cropobjects)
48

This parsing function can deal with the old-style CropObject XML
that uses <Y> and <X> to index the top left corner:

>>> clfile_xy = os.path.join(test_data_dir, '01_basic_xy.xml')
>>> cropobjects_xy = parse_cropobject_list(clfile_xy)
>>> len(cropobjects_xy)
48
>>> len(cropobjects) == len(cropobjects_xy)
True

However, the CropObjects export themselves back only with <Top>
and <Left>.

>>> export_xy = export_cropobject_list(cropobjects_xy)
>>> with open(clfile) as hdl:
... raw_data_topleft = '\n'.join([l.rstrip() for l in hdl])
>>> raw_data_topleft == export_xy
True

Note that what is Y in the data gets translated to cropobj.x (vertical),
what is X gets translated to cropobj.y (horizontal).

Let’s also test the data attribute:

>>> clfile_data = os.path.join(test_data_dir, '..', '01_basic_binary.xml')
>>> cropobjects = parse_cropobject_list(clfile_data)
>>> cropobjects[0].data['pitch_step']
'G'
>>> cropobjects[0].data['midi_pitch_code']
79
>>> cropobjects[0].data['precedence_outlinks']
[8, 17]

	Returns

	A list of ``CropObject``s.

	
muscima.io.validate_cropobjects_graph_structure(cropobjects)

	Check that the graph defined by the inlinks and outlinks
in the given list of CropObjects is valid: no relationships
leading from or to objects with non-existent ``objid``s.

Can deal with cropobjects coming from a combination
of documents, through the CropObject doc property.
Warns about documents which are found inconsistent.

	Parameters

	cropobjects – A list of CropObject instances.

	Returns

	True if graph is valid, False otherwise.

	
muscima.io.validate_document_graph_structure(cropobjects)

	Check that the graph defined by the inlinks and outlinks
in the given list of CropObjects is valid: no relationships
leading from or to objects with non-existent ``objid``s.

Checks that all the CropObjects come from one document. (Raises
a ValueError otherwise.)

	Parameters

	cropobjects – A list of CropObject instances.

	Returns

	True if graph is valid, False otherwise.

muscima package

Submodules

	muscima.cropobject module

	muscima.cropobject_class module

	muscima.dataset module
	Environmental variables

	muscima.grammar module

	muscima.io module
	Data formats
	CropObject
	Additional information

	Unique identification of a CropObject

	Individual elements of a <CropObject>

	Legacy issues with X, Y, and positions

	Implementation notes on the mask

	CropObjectClass

Module contents

	
muscima.STAFF_CROPOBJECT_CLASSES = ['staff_line', 'staff_space', 'staff']

	It is useful for other tools (esp. visualization) to know
that objects from these classes form the staves.

scripts.add_staff_relationships module

The add_staff_relationships.py script automates adding
the relationships of some staff-related symbols to staffs.
The symbols in question are:

	staff_grouping

	measure_separator

	repeat

	key_signature

	time_signature

	g-clef, c-clef, f-clef

	
scripts.add_staff_relationships.add_staff_relationships(cropobjects, notehead_staffspace_threshold=0.2)

	

	
scripts.add_staff_relationships.build_argument_parser()

	

	
scripts.add_staff_relationships.main(args)

	

scripts.add_staffline_symbols module

The script add_staffline_symbols.py takes as input a CVC-MUSCIMA
(page, writer) index and a corresponding CropObjectList file
and adds to the CropObjectList staffline and staff objects.

	
scripts.add_staffline_symbols.build_argument_parser()

	

	
scripts.add_staffline_symbols.main(args)

	

	
scripts.add_staffline_symbols.staffline_surroundings_mask(staffline_cropobject)

	Find the parts of the staffline’s bounding box which lie
above or below the actual staffline.

These areas will be very small for straight stafflines,
but might be considerable when staffline curvature grows.

scripts.analyze_agreement module

analyze_agreement.py is a script that analyzes the agreement between two
annotations of the same file. The script measures:

	Object counts: are they the same?

	Object assignment: given the least-squares mapping of objects
onto each other, to what extent do they differ?

For an overview of command-line options, call:

analyze_agreement.py -h

Alignment algorithm

The script uses a greedy alignment procedure.

First, it computes for each (truth, prediction) symbol pair
their recall, precision, and f-score over pixels that fall within
the mask (bounding box overlap may be misleading, mainly for
parallel beams).

Each predicted symbol is then aligned to the ground truth symbol
with the highest f-score. If the symbol classes of a (truth, prediction)
pair do not match, their score gets set to 0. (This can be turned
off using the --no_strict_clsnames option.)

Next, the alignment is cleaned up: if multiple predictions are
aligned to a single ground truth, the one with the highest f-score
is chosen and the other predicted symbols are considered
unaligned.

Computing the output f-score

Finally, we sum all the f-scores of (truth, prediction)
symbol pairs in the alignment.

Ground truth symbols that are not aligned to any predicted object
also contribute a zero to the overall f-score.

	
scripts.analyze_agreement.align_cropobjects(truth, prediction, fscore=None)

	Aligns prediction CropObjects to truth.

	Parameters

	
	truth – A list of the ground truth CropObjects.

	prediction – A list of the predicted CropObjects.

	Returns

	A list of (t, p) pairs of CropObject indices into
the truth and prediction lists. There will be one
pair for each predicted symbol.

	
scripts.analyze_agreement.bbox_intersection(origin, intersect)

	Returns the coordinates of the origin bounding box that
are intersected by the intersect bounding box.

>>> bounding_box = 10, 100, 30, 110
>>> other_bbox = 20, 100, 40, 105
>>> bbox_intersection(bounding_box, other_bbox)
(10, 0, 20, 5)
>>> bbox_intersection(other_bbox, bounding_box)
(0, 0, 10, 5)
>>> containing_bbox = 4, 55, 44, 115
>>> bbox_intersection(bounding_box, containing_bbox)
(0, 0, 20, 10)
>>> contained_bbox = 12, 102, 22, 108
>>> bbox_intersection(bounding_box, contained_bbox)
(2, 2, 12, 8)
>>> non_overlapping_bbox = 0, 0, 3, 3
>>> bbox_intersection(bounding_box, non_overlapping_bbox) is None
True

	
scripts.analyze_agreement.build_argument_parser()

	

	
scripts.analyze_agreement.cropobjects_rpf(truth, prediction)

	Computes CropObject pixel-level metrics.

	Parameters

	
	truth – A list of the ground truth CropObjects.

	prediction – A list of the predicted CropObjects.

	Returns

	Three matrices with shape (len(truth), len(prediction):
recall, precision, and f-score for each truth/prediction CropObject
pair. Truth cropobjects are rows, prediction columns.

	
scripts.analyze_agreement.main(args)

	

	
scripts.analyze_agreement.pixel_metrics(truth, prediction)

	Computes the recall, precision and f-score for the prediction
CropObject given the truth CropObject.

	
scripts.analyze_agreement.rpf_given_alignment(alignment, r, p, n_not_aligned=0, strict_clsnames=True, truths=None, predictions=None)

	

scripts.analyze_annotations module

analyze_annotation.py is a script that analyzes annotation results.

For an overview of command-line options, call:

analyze_annotation.py -h

Functionality

	Count symbols

	Count symbol classes

	Compute symbol parameters per class (size, morphological features..?) [NOT IMPLEMENTED]

	Count relationships

	Count relationship classes

	Compute relationship parameters per class pair

	
scripts.analyze_annotations.build_argument_parser()

	

	
scripts.analyze_annotations.compute_cropobject_stats(cropobjects, edges=None)

	

	
scripts.analyze_annotations.emit_stats_pprint(stats)

	

	
scripts.analyze_annotations.main(args)

	

scripts.analyze_tracking_log module

analyze_tracking_log.py is a script that performs a quick and dirty analysis
of a MUSCIMarker event log. It is not necessary for using the dataset,
but you might want it running if you are annotating something with MUSCIMarker.

For an overview of command-line options, call:

analyze_tracking_log.py -h

What does the script track?

	Number of minutes/hours worked

	Speed: how much was done in total?

	Densities: frequency of events (calls) per minute/hour

Visualizations:

	Timing visualization

Also, convert to CSV, to make it grep-able? First: fixed-name cols,
then: args dict, formatted as key=value,key=value

	
scripts.analyze_tracking_log.annotations_from_package(package)

	Collect all annotation XML files (with complete paths)
from the given package.

	
scripts.analyze_tracking_log.build_argument_parser()

	

	
scripts.analyze_tracking_log.count_cropobjects(annot_file)

	

	
scripts.analyze_tracking_log.count_cropobjects_and_relationships(annot_file)

	

	
scripts.analyze_tracking_log.events_by_time_units(events, seconds_per_unit=60)

	Puts the events into bins that correspond to equally spaced
intervals of time. The length of time covered by one bin is
given by seconds_per_unit.

	
scripts.analyze_tracking_log.format_as_timeflow_csv(events, delimiter='\t')

	There is a cool offline visualization tool caled TimeFlow,
which has a timeline app. It needs a pretty specific CSV format
to work, though.

	
scripts.analyze_tracking_log.freqdict(l, sort=True)

	

	
scripts.analyze_tracking_log.is_annotation_package(path)

	Checks that the given path is an annotation package.

	
scripts.analyze_tracking_log.logs_from_package(package)

	Collects all log file names (with complete paths) from the given package.

	Parameters

	package – Path to the annotations package.

	Returns

	List of filenames (full paths).

	
scripts.analyze_tracking_log.main(args)

	

	
scripts.analyze_tracking_log.plot_events_by_time(events, type_key='-fn-')

	Simple scatterplot visualization.

All events are expected to have a -fn- component.

	
scripts.analyze_tracking_log.try_correct_crashed_json(fname)

	Attempts to correct an incomplete JSON list file: if MUSCIMarker
crashed, the items list would not get correctly closed. We attempt
to remove the last comma and add a closing bracket (]) on a new
line instead, and return the object as a (unicode) string.

>>> json = '''
... [
... {'something': 'this', 'something': 'that'},'''

	
scripts.analyze_tracking_log.unique_logs(event_logs)

	Checks that the event logs are unique using the start event
timestamp. Returns a list of unique event logs. If two have the same
timestamp, the first one is used.

For logging purposes, expects a dict of event logs. Keys are log file names,
values are the event lists.

scripts.classes2mlclasslist module

This is a script that converts a simple line-based list
of MLClass names into the MLClassList XML definition file
for OMR toolbox. A time-saving utility.

Accepts either one class name per line:

notehead
stem
flag
slur
tie
barline

or one class name and tab-separated class group per line:

notehead note
stem note
flag note
slur notation
tie notation
barline layout

If no group is specified, the <Folder> tag will be identical
to the class name. If group is specified, the folder will be
group/classname.

Colors

Symbols in the same group get the same color.

If no group is given, the color changes along the matplotlib
color cycle.

	
class scripts.classes2mlclasslist.MLClassGenerator

	Bases: object

	
next_color(group=None)

	

	
next_mlclass(cname, group=None)

	

	
scripts.classes2mlclasslist.build_argument_parser()

	

	
scripts.classes2mlclasslist.main(args)

	

	
scripts.classes2mlclasslist.parse_classnames(filename)

	Generator for class name (plus possibly group).

	
scripts.classes2mlclasslist.rgb2hex(rgb)

	Converts a triplet of (R, G, B) floats in 0-1 range
into a hex rgb string.

scripts.get_images_from_muscima module

get_images_from_muscima.py is a script that copies out the images
for which MUSCIMA++ provides symbol annotations from a download
of the CVC-MUSCIMA staff removal dataset.

You have to download this dataset first and provide a path to its
root directory (meaning the directory which contains subdirs for
the individual CVC-MUSCIMA distortions)
to this script. Either supply it directly using the -r option,
or set a CVC_MUSCIMA_ROOT environmental variable.

Example invocation:

get_images_from_muscima.py -o ./images -i 4:10 17:8 5:12 21:10 34:3

MUSCIMA++ 0.9 provides a file with the writer:number pairs for its 140
annotated images in this format, which you can feed to the script
with:

get_images_from_muscima.py [...] -i `cat path/to/MUSCIMA++/specifications/cvc-muscima-image-list.txt

For an overview of all command-line options, call:

get_images_from_muscima.py -h

	
scripts.get_images_from_muscima.build_argument_parser()

	

	
scripts.get_images_from_muscima.main(args)

	

scripts.infer_pitches module

This is a script that takes the full-grown notation graph
and recovers for each notehead the pitch to which it corresponds.

Assumptions

	Clefs are used in a standard way: G-clef on 4th, C-clef on 3rd, F-clef
on 2nd staffline.

	Key signatures are used in a standard way, so that we can rely on counting
the accidentals.

	Accidentals are valid up until the end of the bar.

We are currently NOT processing any transpositions.

Representation

Notes are not noteheads. Pitch is associated with a note, and it is derived
from the notehead’s subgraph. The current goal of this exercise is obtaining
MIDI, so we discard in effect information about what is e.g. a G-sharp
and A-flat.

	
scripts.infer_pitches.build_argument_parser()

	

	
scripts.infer_pitches.main(args)

	

scripts package

Submodules

	scripts.add_staff_relationships module

	scripts.add_staffline_symbols module

	scripts.analyze_agreement module
	Alignment algorithm

	Computing the output f-score

	scripts.analyze_annotations module
	Functionality

	scripts.analyze_tracking_log module

	scripts.classes2mlclasslist module
	Colors

	scripts.get_images_from_muscima module

	scripts.infer_pitches module
	Assumptions

	Representation

Module contents

 _static/down.png

_static/minus.png

_static/plus.png

_static/file.png

_static/intro_screenshot.png
Tools Select MLClassList
Select Grammar
mff-muscima-miclasses-annot.xml

Inm Select MLClass
dES0 notehead-full
Conn. Select image file
Comp. default_score_image.png
. Import CropObjectList file
Obj. Export CropObjectList file
Select Last imp.: test_rle_2.xml
Rel CropObjects: 139
Sel;ect Attachments: 114
Clear CropObjects
Hide CropObjects
Show CropObjects
Hide Relationships
Show Relationships
(34) slur
(33) beam
(30) 16th_flag
(28) stem
(26) stem
(23) grace-notehead-full
(22) notehead-full
UF\R @é CENTER ~ BACKUP ~ RECOVER SETTINGS EXIT

_static/up.png

_static/up-pressed.png

_images/output_12_0.png
[w— p— Y

(0 [Y Y (e

(o Y W [y oy

Y Y (W g o=

Y Y W (v r—

nav.xhtml

 Table of Contents

 		
 muscima – tools for the MUSCIMA++ dataset

_images/output_17_1.png

_static/ajax-loader.gif

_images/output_12_1.png
IRk

[V R Y [[

D__RN_I_1of) |

oo _R_E__f__|

Y Y Y . -

_images/output_17_0.png

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/down-pressed.png

